gRASPA 和 RASPA-2 的直接能量比较!
介绍
- 人们总是想知道:我们可以依赖 gRASPA 计算的能量吗?
我们可以(尝试)用 RASPA-2 确认!
- 我们将在 MOF 中进行 TIP4P 吸附!
准备
- TIP4P.def
- MOF.cif
- 这是 CIF 格式的 MOF 定义文件(目前只允许 P1 对称性)
- force_field_mixing_rules.def
- pseudo_atoms.def
- 重启文件
- 在 RASPA-2 中,根据 结构、单元格、温度和 压力 命名重启文件(顺序很重要)。
- 像 "RestartInitial/System_0/restart_MOF_4.2.2_298.000000_943"
RASPA-2 对于大于 100 万的数字使用科学记数法:用 "1e+06" 表示 100 万。
- 在 gRASPA 中,只需命名为 "restartfile"
- 像 "RestartInitial/System_0/restartfile"
基本上,你读取重启文件,并运行 0 个周期/步数。
gRASPA |
RASPA-2 |
NumberOfInitializationCycles 0
NumberOfEquilibrationCycles 0
NumberOfProductionCycles 0
UseMaxStep yes
MaxStepPerCycle 1
RestartFile yes
RandomSeed 0
NumberOfTrialPositions 10
NumberOfTrialOrientations 10
NumberOfBlocks 1
AdsorbateAllocateSpace 10240
NumberOfSimulations 1
SingleSimulation yes
DifferentFrameworks no
InputFileType cif
FrameworkName qmof-71d1286
UnitCells 0 4 2 2
ChargeMethod Ewald
UseChargesFromCIFFile yes
Temperature 298
Pressure 943
OverlapCriteria 1e5
CutOffVDW 12.8
CutOffCoulomb 12.8
EwaldPrecision 1e-6
Component 0 MoleculeName TIP4P
IdealGasRosenbluthWeight 1.0
FugacityCoefficient 1.0
TranslationProbability 1.0
RotationProbability 1.0
ReinsertionProbability 1.0
SwapProbability 1.0
RunTMMC no
UseBiasOnMacrostate no
TMMCMin 0
TMMCMax 10
CreateNumberOfMolecules 0
|
SimulationType MonteCarlo
NumberOfCycles 0
NumberOfInitializationCycles 0
PrintEvery 1
RestartFile yes
ContinueAfterCrash no
Framework 0
FrameworkName qmof-71d1286
UnitCells 4 2 2
ExternalTemperature 298.0
ExternalPressure 943
Forcefield local
RemoveAtomNumberCodeFromLabel yes
UseChargesFromCIFFile yes
ChargeMethod Ewald
EwaldPrecision 1e-6
CutOffVDW 12.8
CutOffCoulomb 12.0
Component 0 MoleculeName TIP4P
StartingBead 0
MoleculeDefinition local
FugacityCoefficient 1.0
TranslationProbability 0.0
RotationProbability 0.0
ReinsertionProbability 0.0
SwapProbability 0.0
CreateNumberOfMolecules 0
|
结果比较
gRASPA |
RASPA-2 |
========================================================================
*** FINAL STAGE ***
========================================================================
VDW [Host-Host]: 0.00000 (0.00000 [K])
VDW [Host-Guest]: -165480.57010 (-199027.50030 [K])
VDW [Guest-Guest]: 235009.52229 (282651.65960 [K])
Real Coulomb [Host-Host]: 0.00000 (0.00000 [K])
Real Coulomb [Host-Guest]: -437087.31113 (-525695.52363 [K])
Real Coulomb [Guest-Guest]: -1373657.28204 (-1652130.97197 [K])
Ewald [Host-Host]: 589637.95832 (709171.89165 [K])
Ewald [Host-Guest]: -14747.79106 (-17737.52645 [K])
Ewald [Guest-Guest]: -41543.41156 (-49965.26996 [K])
DNN Energy: 0.00000 (0.00000 [K])
Tail Correction Energy: 0.00000 (0.00000 [K])
Total Energy: -1207868.88529 (-1452733.24107 [K])
|
Current (full final energy) Energy Status
===========================================================================
Host/Adsorbate energy: -742474.08208755
Host/Adsorbate VDW energy: -199028.66021012
Host/Adsorbate Coulomb energy: -543445.42187744
Host/Adsorbate charge-charge Real energy: -520688.45228316
Host/Adsorbate charge-charge Fourier energy: -22756.96959428
Host/Adsorbate charge-bonddipole Real energy: 0.00000000
Host/Adsorbate charge-bonddipole Fourier energy: 0.00000000
Host/Adsorbate bondipole-bonddipole Real energy: 0.00000000
Host/Adsorbate bondipole-bonddipole Fourier energy: 0.00000000
...
Adsorbate/Adsorbate energy: -1419485.34470171
Adsorbate/Adsorbate VDW energy: 282651.85973471
Adsorbate/Adsorbate Coulomb energy: -1702137.20443643
Adsorbate/Adsorbate charge-charge Real energy: -1640567.82360744
Adsorbate/Adsorbate charge-charge Fourier energy: -61569.38082899
Adsorbate/Adsorbate charge-bonddipole Real energy: 0.00000000
Adsorbate/Adsorbate charge-bonddipole Fourier energy: 0.00000000
Adsorbate/Adsorbate bondipole-bonddipole Real energy: 0.00000000
Adsorbate/Adsorbate bondipole-bonddipole Fourier energy: 0.00000000
|