My Project
Loading...
Searching...
No Matches
equations_of_state.h
1/*
2#include <vector>
3#include <iostream>
4#include <cmath> // For std::abs, std::sqrt
5#include <stdexcept> // For std::runtime_error
6#include "data_struct.h"
7#include "equations_of_state.h"
8*/
9
10// Assuming the definition of Components and MOLAR_GAS_CONSTANT are provided elsewhere
11const double MOLAR_GAS_CONSTANT = 8.314; // J/(mol*K), example value
12#include <vector>
13#include <array>
14#include <algorithm>
15
16using REAL = double;
17
18void quadraticEquationSolver(const std::array<REAL, 4>& A, std::vector<REAL>& X, int* L)
19{
20 REAL a = A[2];
21 REAL b = A[1];
22 REAL c = A[0];
23 REAL discriminant = b*b - 4*a*c;
24
25 if (a == 0)
26 {
27 // Linear case: Ax + B = 0 -> x = -B/A
28 if (b != 0)
29 {
30 X.push_back(-c / b);
31 *L = 1;
32 }
33 else
34 {
35 // No equation to solve
36 *L = 0;
37 }
38 }
39 else if (discriminant > 0)
40 {
41 // Two real solutions
42 REAL sqrt_discriminant = std::sqrt(discriminant);
43 X.push_back((-b + sqrt_discriminant) / (2*a));
44 X.push_back((-b - sqrt_discriminant) / (2*a));
45 *L = 2;
46 }
47 else if (discriminant == 0)
48 {
49 // One real solution
50 X.push_back(-b / (2*a));
51 *L = 1;
52 }
53 else
54 {
55 // Discriminant < 0, no real solutions
56 *L = 0;
57 }
58}
59
60int cubic(const std::array<REAL, 4>& A, std::vector<REAL>& X, int* L)
61{
62 const REAL PI = 3.14159265358979323846;
63 const REAL THIRD = 1.0 / 3.0;
64 std::array<REAL, 3> U;
65 REAL W, P, Q, DIS, PHI;
66
67 if (A[3] != 0.0)
68 {
69 // Cubic problem
70 W = A[2] / A[3] * THIRD;
71 P = std::pow(A[1] / A[3] * THIRD - std::pow(W, 2), 3);
72 Q = -.5 * (2.0 * std::pow(W, 3) - (A[1] * W - A[0]) / A[3]);
73 DIS = std::pow(Q, 2) + P;
74 if (DIS < 0.0)
75 {
76 // Three real solutions!
77 PHI = std::acos(std::max(-1.0, std::min(1.0, Q / std::sqrt(-P))));
78 P = 2.0 * std::pow((-P), 0.5 * THIRD);
79 for (int i = 0; i < 3; i++)
80 {
81 U[i] = P * std::cos((PHI + 2.0 * static_cast<REAL>(i) * PI) * THIRD) - W;
82 }
83 X = {U[0], U[1], U[2]};
84 std::sort(X.begin(), X.end()); // Sort the roots
85 *L = 3;
86 }
87 else
88 {
89 // Only one real solution!
90 DIS = std::sqrt(DIS);
91 X.push_back(cbrt(Q + DIS) + cbrt(Q - DIS) - W);
92 *L = 1;
93 }
94 }
95 else if (A[2] != 0.0)
96 {
97 // Quadratic problem
98 quadraticEquationSolver(A, X, L); // Assume this function is defined elsewhere
99 }
100 else if (A[1] != 0.0)
101 {
102 // Linear equation
103 X.push_back(A[0] / A[1]);
104 *L = 1;
105 }
106 else
107 {
108 // No equation
109 *L = 0;
110 }
111
112 // Perform one step of a Newton iteration to minimize round-off errors
113 for (int i = 0; i < *L; i++)
114 {
115 X[i] = X[i] - (A[0] + X[i] * (A[1] + X[i] * (A[2] + X[i] * A[3]))) / (A[1] + X[i] * (2.0 * A[2] + X[i] * 3.0 * A[3]));
116 }
117 return 0;
118}
119
120//Zhao's note: pressure and temperature should already be in Components variable
121void ComputeFugacity(Components& TempComponents, double Pressure, double Temperature)
122{
123 printf("================FUGACITY COEFFICIENT CALCULATION================\n");
124 double SumofFractions = 0.0;
125 std::vector<double> MolFraction, PartialPressure, LocalPc, LocalTc, LocalAc, CompNum;
126 std::vector<double> a, b, A, B; // Storing calculated properties
127
128 // need to fix: now we did not consider the gas molecules, need to take in consideration of that.
129 // Idea: Need to find the size of the framework, should be provided somewhere like Components.sth.y
130 int FrameworkComponents = TempComponents.NComponents.y;
131
132 bool NeedEOSFugacityCoeff = false; //If false, then no need to calculate PR-EOS fugacity coefficient, return//
133 for(size_t comp = FrameworkComponents; comp < TempComponents.Total_Components; comp++)
134 {
135 printf("Checking: Current Fugacity Coeff for %zu component: %.5f\n", comp, TempComponents.FugacityCoeff[comp]);
136 if(TempComponents.FugacityCoeff[comp] < 0.0)
137 {
138 printf("Component %zu needs PR-EOS for fugacity coeff (negative value), going to ignore the fugacity coefficient for other components and calculate all using PR-EOS!", comp);
139 NeedEOSFugacityCoeff = true;
140 }
141 }
142
143 if(!NeedEOSFugacityCoeff){ printf("Every Adsorbate Component has fugacity coefficient assigned, skip EOS calculation!\n"); return;}
144 printf("start calculating fugacity, Pressure: %.5f, Temperature: %.5f\n", Pressure, Temperature);
145
146 for(size_t comp = FrameworkComponents; comp < TempComponents.Total_Components; comp++)
147 {
148 double ComponentMolFrac = TempComponents.MolFraction[comp];
149 SumofFractions += ComponentMolFrac;
150 MolFraction.push_back(ComponentMolFrac);
151
152 double CurrPartialPressure = ComponentMolFrac * Pressure;
153 PartialPressure.push_back(CurrPartialPressure);
154
155 double ComponentPc = TempComponents.Pc[comp];
156 double ComponentTc = TempComponents.Tc[comp];
157 double ComponentAc = TempComponents.Accentric[comp];
158
159 LocalPc.push_back(ComponentPc);
160 LocalTc.push_back(ComponentTc);
161 LocalAc.push_back(ComponentAc);
162
163 // Assuming calculations need to be made per component:
164 double Tr = Temperature / ComponentTc; // Reduced temperature
165 double kappa = 0.37464 + 1.54226 * ComponentAc - 0.26992 * std::pow(ComponentAc, 2);
166 double alpha = std::pow(1.0 + kappa * (1.0 - std::sqrt(Tr)), 2);
167 a.push_back(0.45724 * alpha * std::pow(MOLAR_GAS_CONSTANT * ComponentTc, 2) / ComponentPc);
168 b.push_back(0.07780 * MOLAR_GAS_CONSTANT * ComponentTc / ComponentPc);
169 A.push_back(a.back() * Pressure / std::pow(MOLAR_GAS_CONSTANT * Temperature, 2));
170 B.push_back(b.back() * Pressure / (MOLAR_GAS_CONSTANT * Temperature));
171
172 CompNum.push_back(comp);
173
174 printf("Component %zu, Pc: %.5f, Tc: %.5f, Ac: %.5f\n", comp, ComponentPc, ComponentTc, ComponentAc);
175 printf("Component Mol Fraction: %.5f\n", SumofFractions);
176 printf("kappa: %.5f, alpha: %.5f\n", kappa, alpha);
177 //printf("a: %.5f, b: %.5f, A: %.5f, B: %.5f\n", a.back(), b.back(), A.back(), B.back());
178 }
179
180
181 if(std::abs(SumofFractions - 1.0) > 0.0001)
182 {
183 throw std::runtime_error("Sum of Mol Fractions does not equal 1.0");
184 }
185
186 // printf("now printing the component numbers");
187
188 for(int num : CompNum)
189 {
190 std::cout << num << std::endl;
191 }
192
193 size_t NumberOfComponents = CompNum.size();
194
195 std::vector<std::vector<double>> BinaryInteractionParameter(NumberOfComponents, std::vector<double>(NumberOfComponents, 0.0)); // All zeros
196 std::vector<std::vector<double>> aij(NumberOfComponents, std::vector<double>(NumberOfComponents));
197 std::vector<std::vector<double>> Aij(NumberOfComponents, std::vector<double>(NumberOfComponents));
198
199 for(size_t i = 0; i < NumberOfComponents; i++)
200 {
201 for(size_t j = 0; j < NumberOfComponents; j++)
202 {
203 aij[i][j] = (1.0 - BinaryInteractionParameter[i][j]) * std::sqrt(a[i] * a[j]);
204 Aij[i][j] = (1.0 - BinaryInteractionParameter[i][j]) * std::sqrt(A[i] * A[j]);
205 //printf("i: %zu, j: %zu, aij: %.5f, bij: %.5f\n", i,j,aij[i][j],Aij[i][j]);
206 }
207 }
208 double Amix = 0.0;
209 double Bmix = 0.0;
210
211 for(size_t i = 0; i < NumberOfComponents; i++)
212 {
213 Bmix += MolFraction[i] * b[i];
214 for(size_t j = 0; j < NumberOfComponents; j++)
215 {
216 Amix += MolFraction[i] * MolFraction[j] * aij[i][j];
217 }
218 //printf("MolFrac of %zu: %.5f\n", i, MolFraction[i]);
219 }
220 Amix *= Pressure / std::pow(MOLAR_GAS_CONSTANT * Temperature, 2);
221 Bmix *= Pressure / (MOLAR_GAS_CONSTANT * Temperature);
222 // Further calculations or usage of calculated vectors (a, b, A, B) can be done here
223 double Coefficients[4];
224 Coefficients[3] = 1.0;
225 Coefficients[2] = Bmix - 1.0;
226 Coefficients[1] = Amix - 3.0 * std::pow(Bmix, 2) - 2.0 * Bmix; // Using std::pow for square
227 Coefficients[0] = -(Amix * Bmix - std::pow(Bmix, 2) - std::pow(Bmix, 3)); // Using std::pow for square and cube
228 std::array<REAL, 4> CoefficientsArray = {Coefficients[0], Coefficients[1], Coefficients[2], Coefficients[3]};
229
230 //printf("Amix: %.5f, Bmix: %.5f, Coeffs: %.5f, %.5f, %.5f, %.5f\n", Amix, Bmix, Coefficients[0], Coefficients[1], Coefficients[2], Coefficients[3]);
231
232 std::vector<double> Compressibility;
233 int NumberOfSolutions = 0;
234 cubic(CoefficientsArray,Compressibility,&NumberOfSolutions);
235 double temp = 0.0;
236
237 printf("Number of Solutions: %d\n", NumberOfSolutions);
238
239 //for(size_t i = 0; i < Compressibility.size(); i++)
240 // printf("Before Processing: Compressibility %zu = %.5f\n", i, Compressibility[i]);
241 if(Compressibility.size() > 0)
242 {
243 if (Compressibility[0]<Compressibility[1])
244 {
245 temp=Compressibility[0];
246 Compressibility[0]=Compressibility[1];
247 Compressibility[1]=temp;
248 }
249 if(Compressibility.size() > 1)
250 if (Compressibility[1]<Compressibility[2])
251 {
252 temp=Compressibility[1];
253 Compressibility[1]=Compressibility[2];
254 Compressibility[2]=temp;
255 }
256 if(Compressibility[0]<Compressibility[1])
257 {
258 temp=Compressibility[0];
259 Compressibility[0]=Compressibility[1];
260 Compressibility[1]=temp;
261 }
262 }
263 // printf("Compressibility size = %zu", Compressibility.size());
264 //for(size_t i = 0; i < Compressibility.size(); i++)
265 // printf("After Processing: Compressibility %zu = %.5f\n", i, Compressibility[i]);
266
267 std::vector<std::vector<double>> FugacityCoefficients(NumberOfComponents, std::vector<double>(NumberOfSolutions, 0.0));
268
269 for(size_t i = 0; i < NumberOfComponents; i++)
270 {
271 for(size_t j = 0; j < NumberOfSolutions; j++)
272 {
273 double sumAij = 0.0; // Correctly declared sum for Aij calculation
274 for(size_t k = 0; k < NumberOfComponents; k++)
275 {
276 sumAij += 2.0 * MolFraction[k] * Aij[i][k]; // Assuming MolFraction is the correct reference
277 }
278
279 // Ensure FugacityCoefficients is declared and sized appropriately before this block
280 FugacityCoefficients[i][j] = exp((B[i] / Bmix) * (Compressibility[j] - 1.0) - log(Compressibility[j] - Bmix)
281 - (Amix / (2.0 * sqrt(2.0) * Bmix)) * (sumAij / Amix - B[i] / Bmix) *
282 log((Compressibility[j] + (1.0 + sqrt(2.0)) * Bmix) / (Compressibility[j] + (1.0 - sqrt(2.0)) * Bmix)));
283 }
284 }
285 // for(size_t i = 0; i < FugacityCoefficients.size(); i++)
286 // printf("first row for calculated fugacity %zu = %.5f\n", i, Compressibility[i]);
287
288 // ToDO: need to fix
289 for(size_t i = 0; i < NumberOfComponents; i++)
290 {
291 int index = FrameworkComponents + i;
292 if(NumberOfSolutions == 1)
293 {
294 // If there is only one solution, use it
295 TempComponents.FugacityCoeff[index]= FugacityCoefficients[i][0];
296 }
297 else
298 {
299 // More than one solution exists
300 // You can just use the length of Compressibility, instead of comparing values?
301 //use the values in case there is some weird minus values
302 if(Compressibility[2] > 0.0)
303 {
304 // Compare the first and third solutions
305 if(FugacityCoefficients[i][0] < FugacityCoefficients[i][2])
306 {
307 TempComponents.FugacityCoeff[index] = FugacityCoefficients[i][0]; // Favor the first solution
308 }
309 else if(FugacityCoefficients[i][0] > FugacityCoefficients[i][2])
310 {
311 // Favor the third solution, interpreted as vapor (metastable) and liquid (stable)
312 TempComponents.FugacityCoeff[index] = FugacityCoefficients[i][2];
313 }
314 else
315 {
316 // When they are equal, it indicates both vapor and liquid are stable
317 TempComponents.FugacityCoeff[index] = FugacityCoefficients[i][0];
318 }
319 }
320 else
321 {
322 // Default to the first solution if the third compressibility is not positive
323 TempComponents.FugacityCoeff[index] = FugacityCoefficients[i][0];
324 }
325 }
326 printf("Fugacity Coefficient for component %zu is %.10f\n", index, TempComponents.FugacityCoeff[index]);
327 for(size_t ii = 0; ii < FugacityCoefficients.size(); ii++)
328 for(size_t jj = 0; jj < FugacityCoefficients[ii].size(); jj++)
329 printf("Check: Computed FugaCoeff for %zu, %zu is %.10f\n", ii, jj, FugacityCoefficients[ii][jj]);
330 }
331 printf("================END OF FUGACITY COEFFICIENT CALCULATION================\n");
332}
Definition data_struct.h:843